Classification of Scale Items with Exploratory Graph Analysis and Machine Learning Methods

نویسندگان

چکیده

In exploratory factor analysis, although the researchers decide which items belong to factors by considering statistical results, decisions taken sometimes can be subjective in case of having with similar loadings and complex structures. The aim this study was examine validity classifying into dimensions graph analysis (EGA), has been used determining number recent years machine learning methods. A Monte Carlo simulation performed a total 96 conditions including average loadings, sample size, per dimension, dimensions, distribution data. Percent correct Kappa concordance values were evaluation When findings obtained for different evaluated together, it seen that methods gave results comparable those EGA. Machine showed high performance terms percent values, especially small medium-sized samples. all where loading .70, BayesNet, Naive Bayes, RandomForest, RseslibKnn accurate classification performances above 80% like EGA method. Simple Logistic RBFNetwork also demonstrated acceptable or under many conditions. general, supported these results. revealed whether across is done accurately not.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

validation of a revised logical-mathematical intelligence scale and exploring its relationship with english language proficiency

نظریه هوش چندگانه قسمتهای متفاوت هوش بشری را مورد بررسی قرار می دهد که با شناخت آن شخص به درک بهتری از توانایی های خود میرسد و در نتیجه سعی در استفاده از آن جهت یادگیری بهتر میکند. همچنین با شناخت استعداد دانش آموزان، فرایند یادگیری بهتر میشود. هدف از انجام دادن این تحقیق بررسی رابطه بین هوش ریاضی و استعداد یادگیری زبان انگلیسی میباشد. برای انجام این تحقیق از پرسشنامه هوش ریاضی که توسط شیرر در ...

Using Machine Learning for Exploratory Data Analysis

This tutorial will introduce attendees to fundamental concepts in the clustering and dimensionality reduction fields of unsupervised machine learning. Attendees will learn about the assumptions algorithms make and how those assumptions can cause the algorithms to be more or less suited to particular datasets. Hands-on interaction with machine learning algorithms on real and synthetic data are a...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Assessment Tools in Education

سال: 2021

ISSN: ['2148-7456']

DOI: https://doi.org/10.21449/ijate.880914